Adaptable Text Matching via Meta-Weight Regulator

Bo Zhang, Chen Zhang, Fang Ma and Dawei Song

Beijing Institute of Technology

Background

- 1. Deep learning-based models
 - Data-hungry
 - Strong dependency on training data distribution (domain)
- 2. Text Matching Data
 - Deep semantics
 - Difficulty in collecting and labeling

Motivation

How to train a deep text matching model in the few-shot learning setting?

Source Domain Data \longrightarrow Distribution Gap \longrightarrow Poor Performance \longrightarrow Adaptability

Related Work

1. Adaptation methods

- Merging the source and target data directly for training (Koehn et al., 2017)
- Learning a domain classifier to confuse domains adversarially (Cohen et al., 2018)
- A reinforcement learning-based data selector for cross-domain transfer learning (Qu et al., 2019)

2. Weighting examples

- Importance sampling is a classic method in statistics that assigns weights to samples to match one distribution with another (Kahn et al., 1952)
- Focal loss adds a soft weighting scheme that emphasizes harder examples (He et al., 2017)
- Learning to reweight examples for regularization of noisy and corrupted labels (Ren et al., 2019)

Application Scenarios

- 1. Adaptation methods
 - Merging the source and target data directly for training (Koehn et al., 2017)
 - Learning a domain classifier to confuse domains adversarially (Cohen et al., 2018)
 - A reinforcement learning-based data selector for cross-domain transfer learning (Qu et al., 2019)

2. Weighting examples

- Importance sampling is a classic method in statistics that assigns weights to samples to match one distribution with another (Kahn et al., 1952)
- Focal loss adds a soft weighting scheme that emphasizes harder examples (He et al., 2017)
- Learning to reweight examples for regularization of noisy and corrupted labels (Ren et al., 2019)

Meta-Weight Regulator

- I. Establishing a connection in the computational graph (1, 2, 3)
- II. Regulating weights through meta-gradient descent (4, 5)
- III. Training text matching models on weighted samples (6, 7)

The Path of Computational Graph

Establishing a connection in the computational graph

1.
$$y_i^s = TMM^s(a_i^s, b_i^s, \theta)$$

2. $Loss^s(y^s, l^s) = \sum_{i=1}^N w_i^s Cost^s(y_i^s, l_i^s)$
3. $\tilde{\theta} = \theta - \alpha \cdot \frac{\partial Loss^s(y^s, l^s)}{\partial \theta}$
 $= \theta - \alpha \cdot \frac{\partial \sum_{i=1}^N w_i^s Cost^s(y_i^s, l_i^s)}{\partial \theta}$

Establishing a connection in the computational graph

1.
$$y_i^s = TMM^s(a_i^s, b_i^s, \theta)$$

2. $Loss^s(y^s, l^s) = \sum_{i=1}^N w_i^s Cost^s(y_i^s, l_i^s)$
3. $\tilde{\theta} = \theta - \alpha \cdot \frac{\partial Loss^s(y^s, l^s)}{\partial \theta}$
 $= \theta - \alpha \cdot \frac{\partial \sum_{i=1}^N w_i^s Cost^s(y_i^s, l_i^s)}{\partial \theta}$

a . a . a.

Regulating weights through meta-gradient descent

4.
$$Loss^{t}(y^{t}, l^{t}) = \sum_{j=1}^{M} Cost^{t}(y_{j}^{t}, l_{j}^{t})$$

$$= \sum_{j=1}^{M} Cost^{t}(TMM^{t}(a_{j}^{t}, b_{j}^{t}, \tilde{\theta}), l_{j}^{t})$$

$$= w^{s} - \alpha \cdot \frac{\partial \left(\frac{\partial Loss^{t}(y^{t}, l^{t})}{\partial \tilde{\theta}} \cdot \frac{\partial \tilde{\theta}}{\partial w^{s}}\right)}{\partial w^{s}}$$

Regulating weights through meta-gradient descent

4. $Loss^{t}(y^{t}, l^{t}) = \sum_{j=1}^{M} Cost^{t}(y_{j}^{t}, l_{j}^{t})$ $= \sum_{j=1}^{M} Cost^{t}(TMM^{t}(a_{j}^{t}, b_{j}^{t}, \tilde{\theta}), l_{j}^{t})$ $= w^{s} - \alpha \cdot \frac{\partial \left(\frac{\partial Loss^{t}(y^{t}, l^{t})}{\partial \tilde{\theta}} \cdot \frac{\partial \tilde{\theta}}{\partial w^{s}}\right)}{\partial w^{s}}$

Training text matching models on weighted samples

6. $y_i^s = TMM^s(a_i^s, b_i^s, \theta)$ 7. $Loss^s(y, l) = \sum_{i=1}^N \widetilde{w_i^s} \cdot Cost^s(y_i^s, l_i^s)$

Experiments

- 1. Tasks and datasets
 - Question Answering (TrecQA, WikiQA)
 - Natural Language Inference (SNLI, SciTail)
- 2. The Categories of Experiments
 - Adaptation distribution gap (cross-dataset, cross-task)
 - Target domain data size (10-shot, 50-shot, 100-shot and 1000-shot)
- 3. Baselines
 - Backbone model (BERT)
 - Data Merging, Fine Tuning
 - Adversarial Domain Confusion, Reinforced Transfer Learning

Intra-task Cross-dataset Adaptation Experiment

Target Size	Methods	Natural Langu	lage Inference	Question Answering			
Tunger bize		$SciTail \rightarrow SNLI$	SNLI → SciTail	WikiQA \rightarrow TrecQA	$TrecQA \rightarrow WikiQA$		
10-shot	Backbone	0.5391	0.5502	0.5307	0.5197		
	Fine Tuning	0.5390	0.5505	0.5379	0.5306		
	Data Merging	0.5392 0.5499		0.5304	0.5299		
	Reinforced Transfer Learning[27]	0.5675	0.5796	0.5603	0.5538		
	Adversarial Domain Confusion[7]	0.5634	0.5426	0.5406	0.5495		
	Meta-Weight Regulator	0.5769 [†]	0.5887 [†]	0.5768 [†]	0.5796 [†]		
50-shot	Backbone	0.5456	0.5551	0.5376	0.5285		
	Fine Tuning	0.5463	0.5579	0.5380	0.5396		
	Data Merging	0.5406	0.5288	0.5377	0.5297		
	Reinforced Transfer Learning[27]	0.5725	0.5801	0.5632	0.5673		
	Adversarial Domain Confusion[7]	0.5642	0.5536	0.5411	0.5502		
	Meta-Weight Regulator	0.5865 [†]	0.5927^{\dagger}	0.5858^{\dagger}	0.5833 [†]		
100 -h-t	Backbone	0.5697	0.5761	0.5678	0.5658		
	Fine Tuning	0.5701	0.5763	0.5676	0.5669		
	Data Merging	0.5698	0.5759	0.5697	0.5663		
100-51101	Reinforced Transfer Learning[27]	0.5909	0.5976	0.5837	0.5885		
	Adversarial Domain Confusion[7]	0.5797	0.5857	0.5703	0.5812		
	Meta-Weight Regulator	0.6066†	0.6095^{\dagger}	0.6011^{\dagger}	0.6003 [†]		
1000-shot	Backbone	0.5854	0.5971	0.5867	0.5883		
	Fine Tuning	0.5906	0.6051	0.5970	0.5997		
	Data Merging	0.5835	0.5976	0.5879	0.5895		
	Reinforced Transfer Learning[27]	0.6169	0.6206	0.6007	0.6053		
	Adversarial Domain Confusion[7]	0.6078	0.6103	0.6202	0.6205		
	Meta-Weight Regulator	0.6309 [†]	0.6397 [†]	0.6278^{+}	0.6205		

Cross-task Adaptation Experiment

Target Size	Methods	$NLI \rightarrow QA$				$QA \rightarrow NLI$			
		$S \to W$	$S \rightarrow T$	$N \to W$	$N \rightarrow T$	$W \to S$	$W \to N$	$T \rightarrow S$	$T \to N$
10-shot	Backbone	0.5302	0.5323	0.5412	0.5436	0.5252	0.5238	0.5150	0.5178
	Fine Tuning	0.5365	0.5318	0.5465	0.5512	0.5201	0.5289	0.5189	0.5269
	Data Merging	0.5356	0.5281	0.5496	0.5423	0.5275	0.5285	0.5104	0.5207
	Reinforced Transfer Learning[27]	0.5525	0.5601	0.5652	0.5665	0.5501	0.5573	0.5592	0.5590
	Adversarial Domain Confusion[7]	0.5521	0.5599	0.5525	0.5536	0.5395	0.5410	0.5421	0.5496
	Meta-Weight Regulator	0.5721^{\dagger}	0.5710	0.5855^{\dagger}	0.5867 [†]	0.5755 [†]	0.5732	0.5725	0.5759†
50-shot	Backbone	0.5321	0.5356	0.5499	0.5472	0.5271	0.5298	0.5199	0.5210
	Fine Tuning	0.5375	0.5217	0.5412	0.5524	0.5203	0.5299	0.5168	0.5277
	Data Merging	0.5376	0.5210	0.5510	0.5322	0.5279	0.5291	0.5201	0.5215
	Reinforced Transfer Learning[27]	0.5652	0.5699	0.5719	0.5705	0.5519	0.5602	0.5657	0.5612
	Adversarial Domain Confusion[7]	0.5647	0.5691	0.5601	0.5599	0.5397	0.5413	0.5425	0.5501
	Meta-Weight Regulator	0.5807	0.5821	0.5911^{\dagger}	0.5904^{\dagger}	0.5897 [†]	0.5845^{\dagger}	0.5823	0.5929 [†]
100-shot	Backbone	0.5521	0.5507	0.5676	0.5689	0.5563	0.5621	0.5669	0.5687
	Fine Tuning	0.5537	0.5523	0.5670	0.5702	0.5615	0.5645	0.5719	0.5697
	Data Merging	0.5536	0.5492	0.5563	0.5613	0.5578	0.5601	0.5691	0.5539
	Reinforced Transfer Learning[27]	0.5755	0.5815	0.5896	0.5905	0.5776	0.5791	0.5756	0.5801
	Adversarial Domain Confusion[7]	0.5779	0.5796	0.5834	0.5826	0.5779	0.5793	0.5757	0.5812
	Meta-Weight Regulator	0.5965	0.6017^{\dagger}	0.5979	0.6061^{\dagger}	0.6003†	0.6013 [†]	0.5999†	0.6198 [†]
1000-shot	Backbone	0.5619	0.5625	0.5897	0.5901	0.5768	0.5724	0.5779	0.5791
	Fine Tuning	0.5634	0.5637	0.5870	0.6002	0.5914	0.5845	0.5896	0.5799
	Data Merging	0.5674	0.5729	0.5856	0.5997	0.5779	0.5809	0.5876	0.5693
	Reinforced Transfer Learning[27]	0.5976	0.5997	0.6103	0.6201	0.6059	0.6032	0.6075	0.6012
	Adversarial Domain Confusion[7]	0.6077	0.6089	0.6021	0.6187	0.6125	0.6017	0.6142	0.6099
	Meta-Weight Regulator	0.6146^{\dagger}	0.6157^{\dagger}	0.6275^{\dagger}	0.6296†	0.6112	0.6180^{\dagger}	0.6145	0.6301^{\dagger}

Ablation Study

1. Backbone Models

- Interaction-based text matching model
- Representation-based text matching model
- 2. Source Weight Initialization
 - Random Initialization (vs **Zero Initialization**, vs One Initialization)
 - One Initialization (vs Zero Initialization, vs Random Initialization)
- 3. Effectiveness of MAML
 - MAML vs Reptile

- The adaptability of the deep text matching model is improved significantly
- No constraints on source domain data
- No hyperparameters are introduced

Thanks for listening