A Simple Baseline for Cross-domain Few-shot Text Classification

Chen Zhang, Dawei Song

Outline

- Preliminary
 - Few-shot Text Classification
 - Cross-domain Text Classification
- •
- A Simple Baseline Performs Considerably
- Experiments \bullet
- Conclusion

Cross-domain Few-shot Text Classification (XFew) Fails Few-shot Classifiers

Text Classification

- Given a training dataset $D^{tr} = \{(x_i, y_i)\}_i$, and a test dataset $D^{ts} = \{(x_i, y_i)\}_i$. • Learning a classifier $f_{\theta}: x \to y$ on D^{tr} so that it can perform perfectly on D^{ts} . • Typically, $x \sim P(X)$ and $y \in Y$ hold across D^{tr} and D^{ts} ; That is, no domain
- shift or concept shift.
- E.g., intent detection
 - "how is the weather today?" = "weather".

Few-shot Text Classification

- Text classification under concept shift; That is, $Y^{tr} \cap Y^{ts} = \emptyset$.
- E.g., new intents may emerge now and then
 - These new intents usually come with only a few examples, <100 per class.
 - Similar to cold start phenomenon in recommender systems.
- Conventional classifiers can not generalize.

Cross-domain Text Classification

- Text classification under domain shift; That is, $P^{tr}(X) \neq P^{ts}(X)$.
- E.g., we have a plenty of sentiment annotations from the restaurant domain but we want to perform sentiment classification on the electronics domain
 - "The sushi here is great." => "positive".
 - "The resolution of the display is terrific." = "?".
- Conventional classifiers get degraded performance.

Cross-domain Few-shot Text Classification (XFew)

- Sometimes a new domain comes with a new label set.
- E.g.,
 - "How is the weather today?" => "weather". ("siri" domain)
 - "How to cancel the credit card?" => "cancellation of credit card." (banking domain)
- A small yet important step towards achieving lifelong text classification.

Few-shot Classifiers

- Few-shot classifiers
 - Metric-based

Optimization-based

Require: $p(\mathcal{T})$: distribution over tasks **Require:** α , β : step size hyperparameters 1: randomly initialize θ 2: while not done do for all \mathcal{T}_i do 4: 5: 6:

- 7:
- 8:
- 9: end while

Etc.

Algorithm 1 Model-Agnostic Meta-Learning

Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$

Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples Compute adapted parameters with gradient descent: $\theta'_i = \theta - \alpha \nabla_\theta \mathcal{L}_{\mathcal{T}_i}(f_\theta)$ end for Note: the meta-update is using different set of data. Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$

Algorithm 2 Reptile, batched version

Initialize θ for iteration = $1, 2, \ldots$ do Sample tasks $\tau_1, \tau_2, \ldots, \tau_n$ for i = 1, 2, ..., n do Compute $W_i = \text{SGD}(L_{\tau_i}, \theta, k)$ end for Update $\theta \leftarrow \theta + \beta \frac{1}{n} \sum_{i=1}^{n} (W_i - \theta)$ I for end for

N-way K-shot Setting

- N-way K-shot setting is arranged for evaluation of few-shot classifiers
 - N-way stands for N classes, and K-shot stands for K examples per class.
 - An episode contains N-way K-shot support examples, and N-way Q-shot query examples.
 - A few-shot classifier should adapt to the offered support examples and be evaluated on the query examples during an episode.
 - An evaluation result is obtained by averaging results of multiple episodes.
- In order to align training and evaluation, previous few-shot classifiers conduct episode-based arrangement also at training time.

N-way K-shot Setting

• An illustration with the image scenario (here, 2-way 4-shot).

Few-shot Classifiers Can Fail

- capacity.
- classifiers for cross-domain scenarios.

A few-shot classifier (w/ small class capacity) can hardly extrapolate.

• Given the limited number of classes seen at each episode, we hypothesize the classifier can not gain a good insight of class manifolds, or a good class

N-way sampling shall be good for in-domain scenarios, but can fail few-shot

- Solid lines sampled classes
- Dashed lines other classes
- Yellow seen classes
- Green in-domain unseen classes
- Purple cross-domain unseen classes

A Simple Baseline Performs Considerably

- N-way K-shot setting seems to be not suitable for cross-domain scenario, we are driven by this thus propose a simple baseline, named PtNet.
- Train conventionally (larger class capacity compared with training schemes constrained by the N-way K-shot setting).
- Induct classifier weights instantly (able to adapt in a few-shot manner required by the N-way K-shot setting).

$$\mathbf{w}_j = \sum_{x_i \in \mathcal{S}_j} f_{\theta}(x_i) / k \qquad \mathbf{y}_{i,j} = \operatorname{softmax}(\alpha \cdot \mathbf{w}_j^\top f_{\theta}(x_i) / \|\mathbf{w}_j\| \|f_{\theta}(x_i)\|), \quad x_i \in \mathcal{Q}$$

Experimental Setup

- banking domain.
- above two.
- 5-way {1, 5, 10}-shot setting.

	Home	Banking	Home2Banking	Banking2Home
# (base) classes for training	39	49	56	70
# (base) classes for validation	6	7	7	7
# (novel) classes for test	18	21	77	63

• Two intent detection datasets, one is from home domain and the other is from

Constructing two in-domain datasets and two cross-domain datasets from

In-domain Evaluation

Our PtNet can nice results on in-domain evaluation.

settings. Results in **bold** are the best performing ones under each setting.

Model	Home			Banking			
	1-shot	5-shot	10-shot	1-shot	5-shot	10-shot	
InductNet	$63.19 {\pm} 0.41$	$71.67 {\pm} 0.31$	$74.90{\pm}0.29$	$76.72 {\pm} 0.38$	$85.00 {\pm} 0.27$	$85.41 {\pm} 0.25$	
RelationNet	$63.38 {\pm} 0.41$	$74.81 {\pm} 0.33$	$73.19{\pm}0.34$	$81.31 {\pm} 0.35$	$88.00 {\pm} 0.26$	$89.57 {\pm} 0.23$	
MAML	$58.58 {\pm} 0.38$	$68.44 {\pm} 0.35$	$71.01 {\pm} 0.32$	$69.51 {\pm} 0.39$	$81.58 {\pm} 0.29$	$84.03 {\pm} 0.26$	
ProtoNet	67.91 ±0.39	$82.92 {\pm} 0.26$	$86.15 {\pm} 0.22$	82.59 ± 0.31	92.20 ± 0.17	93.44 ±0.14	
PtNet	$63.82 {\pm} 0.38$	83.32±0.23	86.63 ±0.20	$75.83{\pm}0.34$	$89.80 {\pm} 0.20$	$92.08 {\pm} 0.16$	

Table 2. In-domain comparison results (%) under 5-way 1-shot, 5-shot, and 10-shot

Cross-domain Evaluation

Our PtNet is better than baselines on cross-domain evaluation.

settings. Results in **bold** are the best performing ones under each setting.

Model	Home2Banking			Banking2Home			
	1-shot	5-shot	10-shot	1-shot	5-shot	10-shot	
InductNet	$46.15 {\pm} 0.36$	$54.64 {\pm} 0.33$	$54.52 {\pm} 0.31$	$44.54{\pm}0.34$	$57.78 {\pm} 0.32$	$64.98 {\pm} 0.31$	
RelationNet	$43.55 {\pm} 0.35$	$56.89 {\pm} 0.32$	$55.26{\pm}0.31$	$42.10 {\pm} 0.34$	$55.00 {\pm} 0.32$	$57.19 {\pm} 0.30$	
MAML	$44.42 {\pm} 0.34$	$52.07 {\pm} 0.36$	$35.90 {\pm} 0.31$	$37.53 {\pm} 0.30$	$46.31 {\pm} 0.31$	$44.51 {\pm} 0.33$	
ProtoNet	56.90 ±0.34	79.23 ±0.28	$82.90 {\pm} 0.24$	$54.62 {\pm} 0.35$	$78.32 {\pm} 0.27$	82.02 ± 0.24	
PtNet	$50.78 {\pm} 0.34$	77.14 ± 0.27	84.35±0.21	58.87 ±0.36	81.34 ±0.26	84.95±0.22	

Table 3. Cross-domain comparison results (%) under 5-way 1-shot, 5-shot, and 10-shot

Conclusion

- Few-shot classifiers perform less promisingly on XFew.
- XFew is still challenging.

PtNet can perform considerably better than previous methods on XFew.