

Motivation

JJ Tail bottleneck

JI Tail classes, which are with very few examples, in a longtailed class distribution prevents PLMs from achieving good performance.

JI Head-to-tail transfer

Jail classes are intuitively few-shot ones. However, longtailed classification allows the possibility to transfer knowledge from head classes to tail ones.

I Prompt-tuning makes PLMs better few-shot learners

I It motivates us to hypothesize that Prompt-tuning can relieve the tail bottleneck and thus make PLMs at least good long-tailed learners.

Dataset	CMID		IFLYTEK		Стс		MSRA		R52		AVG 9ac		ead	Dataset	CMID		IFLYTEK		Стс		MSRA		R52		AVG	
Metric	Acc	F1	Acc	F1	Acc	F1	Acc	F1	Acc	F1	Acc	F1	ar	Metric	Acc	F1	Acc	F 1	Acc	F1	Acc	° F1	Acc	F1	Acc	F1
CLS-tuning w/ η-norm w/ focal loss	51.1 _{0.4} 51.1 _{0.5} 51.0 _{0.7}	$\begin{array}{c} 37.3_{2.3} \\ 37.4_{2.0} \\ 42.1_{1.3} \end{array}$	58.7 _{0.4} 59.1 _{0.3} 58.8 _{0.3}	$\begin{array}{c} 33.7_{1.6} \\ 35.7_{1.6} \\ 36.0_{1.6} \end{array}$	$\begin{array}{c} 84.6_{0.3} \\ 84.7_{0.2} \\ 84.3_{0.4} \end{array}$	77.2 $_{2.9}$ 77.3 $_{3.1}$ 78.5 $_{2.4}$	99.0 _{0.1} 99.0 _{0.1} 99.0 _{0.1}	$97.5_{1.0}$ $97.4_{0.9}$ $96.8_{1.2}$	$95.3_{0.2} \\ 95.4_{0.3} \\ 95.7_{0.2}$	$\begin{array}{c} 67.3_{1.3} \\ 68.9_{1.9} \\ 72.8_{2.3} \end{array}$	77.7 77.9 77.8	62.6 63.3 65.2	- I .U	CLS-tuning \circ T w/ η -norm w/ focal loss	$51.1_{0.4} \\ 51.1_{0.5} \\ 51.0_{0.7}$	$\begin{array}{c} 37.3_{2.3} \\ 37.4_{2.0} \\ 42.1_{1.3} \end{array}$	58.7 _{0.4} 59.1 _{0.3} 58.8 _{0.3}	$\begin{array}{c} 33.7_{1.6} \\ 35.7_{1.6} \\ 36.0_{1.6} \end{array}$	$\begin{array}{c} 84.6_{0.3} \\ 84.7_{0.2} \\ 84.3_{0.4} \end{array}$	77.2 _{2.9} 77.3 _{3.1} 78.5 _{2.4}	99.0 _{0.1} 99.0 _{0.1} 99.0 _{0.1}	97.5 _{1.0} 97.4 _{0.9} 96.8 _{1.2}	$95.3_{0.2} \\ 95.4_{0.3} \\ 95.7_{0.2}$	$\begin{array}{c} 67.3_{1.3} \\ 68.9_{1.9} \\ 72.8_{2.3} \end{array}$	77.7 77.9 77.8	62.6 63.3 65.2
Prompt-tuning w/ focal loss Metric	49.3 _{0.7} 48.6 ₀₆ Head	43.4 _{0.7} 42.5 _{0.6} Tail	61.2 _{0.6} 59.7 _{0.6} Head	44.4 _{1.0} 43.9 _{0.7} Tail	84.2 _{0.1} 83.5 _{0.6} Head	80.9 _{0.1} 80.2 _{0.7} Tail	99.1 _{0.0} 99.0 _{0.1} Head	97.8 _{0.3} 97.2 _{0.7} Tail	95.7 $_{0.1}$ 95.5 $_{0.3}$ Head	85.3 _{0.6} 82.6 _{2.4} Tail	77.9 77.3 Head	70.4 69.3 Tail	ar -	CLS-tuning \circ R w/ η -norm w/ focal loss	50.9 _{0.4} 50.9 _{0.5} 51.0 _{0.5}	$\begin{array}{c} 34.5_{1.4} \\ 34.8_{1.8} \\ 40.1_{1.5} \end{array}$	$58.7_{0.3} \\ 58.4_{0.3} \\ 58.8_{0.4}$	$\begin{array}{c} 33.3_{1.1} \\ 33.3_{1.0} \\ 34.6_{0.1} \end{array}$	$\begin{array}{c} 84.4_{0.4}\\ 84.6_{0.4}\\ 84.6_{0.3}\end{array}$	$77.1_{1.0} \\78.0_{1.5} \\76.9_{0.6}$	99.0 _{0.1} 99.1 _{0.0} 99.0 _{0.1}	97.7 _{0.5} 97.8 _{0.5} 97.0 _{1.5}	$\begin{array}{c} 94.2_{0.4} \\ 94.3_{0.3} \\ 95.1_{0.3} \end{array}$	$56.2_{2.5}$ $56.3_{1.9}$ $66.0_{2.7}$	77.4 77.5 77.7	59.8 60.0 62.9
CLS-tuning w/ η-norm w/ focal loss	$50.3_{1.0} \\ 50.3_{0.9} \\ 49.8_{0.8}$	$\begin{array}{c} 34.1_{3.0} \\ 34.3_{2.7} \\ 40.2_{1.5} \end{array}$	$\begin{array}{c} 61.8_{0.6} \\ 62.1_{0.4} \\ 62.0_{0.4} \end{array}$	$\begin{array}{c} 27.4_{1.9} \\ 29.7_{2.0} \\ 30.2_{1.9} \end{array}$	87.7 _{0.2} 87.8 _{0.2} 87.5 _{0.3}	$74.1_{3.7} \\ 74.3_{4.0} \\ 75.9_{3.1}$	$99.2_{0.1} \\ 99.2_{0.1} \\ 99.3_{0.0}$	97. $4_{1.1}$ 97. $3_{1.0}$ 96. $7_{1.3}$	99.0 _{0.1} 99.0 _{0.1} 99.0 _{0.0}	$\begin{array}{c} 66.6_{1.3} \\ 68.3_{1.9} \\ 72.3_{2.4} \end{array}$	79.6 79.7 79.5	59.9 60.8 63.1		CLS-tuning o R w/ prompt w/ LN w/ pt. LN	49.7 _{0.5} 51.3 _{0.6} 50.8 _{0.6}	$\begin{array}{c} 33.1_{0.4} \\ 42.0_{1.4} \\ 42.5_{1.2} \end{array}$	58.4 _{0.3} 59.7 _{0.6} 59.4 _{0.4}	32.8 _{1.0} 39.1 _{0.8} 41.4 _{0.9}	84.6 _{0.1} 84.6 _{0.5} 84.4 _{0.5}	77.2 _{3.0} 79.4 _{2.2} 79.7 _{1.5}	99.0 _{0.1} 99.1 _{0.1} 99.1 _{0.1}	96.9 _{0.3} 97.1 _{0.8} 97.7 _{0.5}	94.1 _{0.3} 96.1 _{0.2} 96.2 _{0.2}	$54.5_{3.1}$ 77.7 _{3.5} 82.0 _{1.8}	77.2 78.2 78.0	58.9 67.1 68.7
Prompt-tuning w/ focal loss	$\begin{array}{c} 48.4_{1.0} \\ 47.1_{0.8} \end{array}$	42.2 _{0.7} 41.4 _{0.8}	63.6 _{0.4} 62.3 _{0.6}	40.1 _{1.2} 39.8 _{0.8}	87.4 _{0.2} 86.7 _{0.5}	79.0 _{0.2} 78.3 _{0.7}	99.2 _{0.1} 99.3 _{0.1}	97.7 _{0.3} 97.1 _{0.7}	98.6 _{0.1} 98.8 _{0.1}	85.0 _{0.6} 82.3 _{2.4}	79.4 78.8	68.8 67.8	2 4	Prompt-tuning w/ ed.	49.3 _{0.7} 49.4 _{0.7}	43.4 _{0.7} 43.6 _{0.7}	61.2 _{0.6} 61.0 _{0.7}	44.4 _{1.0} 44.4 _{1.0}	$84.2_{0.1}$ $84.2_{0.4}$	80.9 _{0.1} 80.5 _{0.9}	99.1 _{0.0} 99.0 _{0.2}	97.8 _{0.3} 96.9 _{1.4}	95.7 _{0.1} 95.7 _{0.2}	85.3 _{0.6} 84.9 _{1.0}	77.9 77.9	70.4 70.1

Making Pretrained Language Models <u>G</u>ood Long-tailed Learners

Abbreviated as Glee

Chen Zhang¹, Lei Ren², Jingang Wang^{2*}, Wei Wu², Dawei Song^{1*} ¹Beijing Institute of Technology, ²Meituan NLP, *Corresponding Author

Background	Setup	Resu											
JJ Long-tailed classification	J Long-tailed datasets												
$ \int Dataset \mathcal{D} = \{(x_i, y_i)\}_i, \text{ where } (x, y) \sim P(\mathcal{X}, \mathcal{Y}). $	J Medical Question Intent (Cmid), Application Category	JJ E											
$I P(\mathcal{Y})$ is a long-tailed one.	(Msra), Document Topic (R52).												
If PLM \mathscr{M} is hard-to-optimize on \mathscr{D} .	JJ Baselines	ele E											
JJ CLS-tuning	$\int CLS$ -tuning, w/ η -norm, w/ focal loss, w/ prompt, w/ LN,												
JJ Input: x; Output: y.	W/pt. (pretrained) LIN.	SS Res											
JJ Backbone &: [CLS] vector.	decoupling).	JJ F											
\mathcal{G} Classifier \mathscr{C} : a Tanh-activated MLP, CLS head.	J Metrics	F											
$\int Objective \mathbb{L}_{CLS} = \mathbb{E}_{\mathscr{D}} - \log P(y x; \mathscr{M}).$	GACCURACY SCORES: tail insensitive, FI scores: tail sensitive,												
J Prompt-tuning	Head FT scores for head classes, fail FT scores for tail classes.												
Input: $\mathcal{T}(x)$; Output: $\mathcal{V}(x)$.		C											
JJ Backbone &: [MASK] vector.	CLS head 1.0 - CLS head 1.0 - CLS head CLS head												
CLS · label:positive CLS · label:positive Lassifier &: pretrained MLM head. · label:negat	Linear 0.8 -	JJ F											
$\int Objective: \mathbb{L}_{CLS} = \mathbb{E}_{\mathscr{D}} - \log P(\mathscr{V}(y) \mathscr{T}(x); \mathscr{M}).$	pper Linear bind linear	(t											
-CLS bead-	CMLM head	┛╛											
tive Linear	Linear 0.2 -												
ative Tanh • terrible (label:negative) • terrible (label:negative)	MLM head GELU 0.0 - Head Tail												
Linear [[CLS] The movie tonight is fascinating ! It	was [MASK].[SEP] Linear Linear Class index (from head to tail).												
R52 AVG ead Dataset CMID	IFLYTEK CTC MSRA R52 AVG												
1 Acc F1 Acc F1 ar Metric Acc F1 A	Acc F1 Acc F1 Acc F1 Acc F1 Acc F1	Con											
$5_{1.0}$ $95.3_{0.2}$ $67.3_{1.3}$ 77.7 62.6 CLS-tuning \circ T $51.1_{0.4}$ $37.3_{2.3}$ $58.5_{1.9}$ $4_{0.9}$ $95.4_{0.3}$ $68.9_{1.9}$ 77.9 63.3 w/η -norm $51.1_{0.5}$ $37.4_{2.0}$ $59.5_{1.0}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	JJ Pro mo											

clusions

The 2022 Conference on Empirical Methods in Natural Language Processing

Its & Analyses

Bottom left: Prompt-tuning largely outperforms CLStuning and calibrated CLS-tuning (e.g. CLS-tuning w/ focal loss) mainly due to the improved tail performance.

Bottom right: Weight norm visualization indicates that Prompt-tuning learns a better balance between head and tail classes.

search questions (bottom right)

RQI: Does the shared embedding contribute to [>]rompt-tuning?

 \int Prompt-tuning w/ ed. decreases the performance. => negative response.

RQ2: Does the input structure (i.e., MLM input) contribute to Prompt-tuning?

CLS-tuning w/ prompt decreases the performance. = negative response.

RQ3: Does the classifier structure and parameterization (e.g., layer normalization used in MLM head) contribute o Prompt-tuning?

CLS-tuning w/ LN and w/ pt. LN increases the performance. => positive response.

ompt-tuning essentially makes pretrained language odels good long-tailed learners.

I Through in-depth analyses, we uncover that the structure and parameterization are the key to enhancing long-tailed performance of pretrained language models.

 \int_{I} The finding may shed light on the design of Prompt-tuning.