# Task-agnostic Distillation for Encoder-decoder Language Models



Chen Zhang<sup>1</sup>, Yang Yang<sup>2</sup>, Qiuchi Li<sup>3</sup>, Jingang Wang<sup>2</sup>, Dawei Song<sup>1\*</sup> <sup>1</sup>Beijing Institute of Technology, <sup>2</sup>Meituan NLP, <sup>3</sup>University of Copenhagen \*Corresponding author



- previous studies on task-agnostic distillation mainly focus on encoder-only language models (e.g. BERT) or decoder-only language models (e.g., GPT2).
- while attention-based distillation is suitable for BERT (e.g., MiniLM) and logit-based distillation is suitable for GPT2 (e.g., DistilGPT2), they fail to make distilled encoder-decoder language models surpass pretraining-from-scratch baseline.

#### **Results**

|                                     | GFLOPs |               |      | MDDO |                 | 000  |           |      | DTE  |       |
|-------------------------------------|--------|---------------|------|------|-----------------|------|-----------|------|------|-------|
| Method                              |        |               | Acc  | F1   | SIS-B<br>SpCorr | F1   | Acc       | Acc  | Acc  | Score |
| T5 <sub>base</sub>                  | 25.4   | $\frac{1}{2}$ | 94.6 | 93.0 | 90.0            | 88.9 | 86.7/86.8 | 92.9 | 74.7 | 88.5  |
| T5 <sub>6L:384H</sub>               | 3.18   |               | 92.2 | 90.2 | 86.0            | 87.3 | 81.2/81.7 | 88.2 | 70.0 | 84.6  |
| MiniDisc <sub>5%</sub> <sup>①</sup> | 7.80   | 3~8×          | 93.8 | 89.8 | 85.3            | 86.7 | 82.9/82.7 | 89.2 | 64.6 | 84.4  |
| MImKD <sub>6L:384H</sub>            | 3.18   |               | 92.3 | 88.7 | 86.2            | 87.5 | 81.6/82.1 | 88.2 | 67.9 | 84.3  |
| MiniLM <sub>6L:384H</sub>           | 3.18   |               | 92.1 | 89.6 | 85.2            | 87.0 | 81.2/81.5 | 88.0 | 68.6 | 84.1  |
| MImKD+MiniLM <sub>6L;384H</sub>     | 3.18   |               | 92.4 | 89.2 | 86.0            | 87.3 | 81.7/82.1 | 89.1 | 67.9 | 84.5  |
| MINIEND-D <sub>6L:384H</sub>        | 3.18   |               | 92.1 | 90.6 | 85.8            | 87.7 | 81.8/82.3 | 89.0 | 68.6 | 84.7  |
| w/o $\mathcal{L}^{Logit}$           | 3.18   | ×             | 92.2 | 90.1 | 86.6            | 87.6 | 82.2/82.8 | 89.1 | 68.6 | 84.9  |
| MINIEND-E6L:384H                    | 3.18   | ŵ             | 92.7 | 90.0 | 86.1            | 87.4 | 81.8/82.1 | 88.8 | 69.3 | 84.8  |
| W/O CLogit                          | 3 18   |               | 92.3 | 89.9 | 86.6            | 87.7 | 82 5/83.1 | 89.2 | 69.0 | 85.0  |

<sup>10</sup> MiniDisc is distilled from T5<sub>xlarge</sub>, and owns larger GFLOPs.

 comprehensive results demonstrate the improved effectiveness, see more results in our paper.

### Method

- encoder-decoder interplay is important, without which the distillation would be rather unstable:
  - a gradient perspective by contrasting explicit objective involving the interplay to implicit objective, where explicit one admits stable training.



• based on the observation, two explicit objectives are proposed: • one considering decoder self-attention and decoder cross-attention (MiniEnD-D), and another considering decoder self-attention and encoder self-attention (MiniEnD-E).

## Conclusions

- in this paper, we aim to provide a path that suc- cessfully tackles the distillation of encoder-decoder LMs, which fails most previous methods in the area. We find through a pilot study that the encoder- decoder interplay is a key component that should be aligned in the distillation so that the distilled encoder-decoder LMs are promising. Based on the idea, we propose two directions that the encoder- decoder interplay alignment can be incorporated and verify their effectiveness on a language understanding benchmark and two abstractive summarization datasets.
- this work is funded in part by the Natural Science Foundation of China (grant no: 62376027) and Beijing Municipal Natural Science Foundation (grant no: 4222036 and IS23061).

 $\mathcal{L}^{\mathsf{Imp}} = \mathcal{L}^{\mathsf{Logit}}(\mathcal{S}; \mathcal{T}, \mathcal{D}_{\mathbf{Z}}) + \mathcal{L}^{\mathsf{SelfAttn}}(\mathcal{S}; \mathcal{T}, \mathcal{D}_{\mathbf{Z}}),$ 

 $\mathcal{L}^{\mathsf{Exp}} = \mathcal{L}^{\mathsf{Logit}}(\mathcal{S}; \mathcal{T}, \mathcal{D}_{\mathbf{Z}}) + \mathcal{L}^{\mathsf{SelfAttn}}(\mathcal{S}; \mathcal{T}, \mathcal{D}_{\mathbf{Z}})$  $+ \mathcal{L}^{\mathsf{CrossAttn}}(\mathcal{S}; \mathcal{T}, \mathcal{D}_{\mathbf{Z}}, \mathcal{D}_{\mathbf{E}})$ 

 $\mathcal{L}(\mathcal{S}; \mathcal{T}, \mathcal{D}_{\mathbf{Z}}, \mathcal{D}_{\mathbf{X}}) = \mathcal{L}^{\mathsf{Logit}}(\mathcal{S}; \mathcal{T}, \mathcal{D}_{\mathbf{Z}}) +$  $\mathcal{L}^{\mathsf{SelfAttn}}(\mathcal{S}; \mathcal{T}, \mathcal{D}_{\mathbf{Z}}) + \mathcal{L}^{\mathsf{EncSelfAttn}}(\mathcal{S}; \mathcal{T}, \mathcal{D}_{\mathbf{X}}),$