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Why Democratization

Moore’s Law and Beyond

* Moore’s law and Huang’s law have respectively indicated that CPU and GPU performance will
exponentially increase. However, this increase lags far behind that of model scale.
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Why Democratization

An Exemplar: Apple Intelligence

* Apple has invented a concept termed Apple Intelligence that highlights the use of small language
models (SLMs) to aid the drawbacks of serving LLMs.
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Democratization in Size

Distillation

 Language model (LM) distillation aims at reducing inference compute by distilling a large LM into a small
LM under a teacher-student paradigm.

Teacher Knowledge Student




Democratization In Size
Capacity Gap: Intuition

* Distillation directly from the teacher to the student may suffer from the capacity gap.

* |t is intuitive to recognize that a student at primary level might not be taught very well by a teacher at
graduate level.
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Democratization in Size

Capacity Gap: Theory |

* Here comes a minor theory of why capacity gap should be crucial.

* The approximation error in Proposition 1 is negatively correlated with the teacher size.

* The approximation error in Proposition 2 is negatively correlated with the student size, thus positively
with the teacher-student size discrepancy given the teacher size is fixed.

Proposition 1 (VC dimension theory, Vapnik,
1998). Assuming that the teacher function is fr €
F, the labeling function is | € F, and the data

is D, we have:

’fT‘c)
D|

r(fr) —r(f) <er+of

where r(-) is the risk function, | - |. is the function
class capacity measure, and | - | is the data scale
measure. It should be highlighted that the approx-
imation error €7 is negatively correlated with the
capacity of the teacher model while the estimation
error o(-) is correlated with the learning optimiza-
tion.

Proposition 2 (Generalized distillation the-
ory, Lopez-Paz et al., 2016). Additionally provid-
ing that the student function is fs € Fs, we have:

r(fs) —r(fr) < eg + of

where the approximation error €g is positively cor-
related with the capacity gap between the teacher
and the student models, and 1/2 < a < 1is a

factor correlated to the learning rate.



Democratization In Size
Capacity Gap: Theory I

* Combining Proposition 1 and 2 gives the ultimate theory.

 The student performance is proven to be concerned with both the teacher performance and the
capacity gap.

Theorem 1. The bound for the student function at
a learning rate can be written as:

‘f7'|c
) + of )

D Dl

Frle + \fs\c)
Dl |

r(fs) = r(f) < er +eg +of

< e+ €eg+ of

Proof. The proof is rather straightforward by com-
bining Proposition 1 and 2.

Remark 1. Under the same distillation setting, we
can ignore the estimation error. When we compare
two students of different capacities distilled from
a teacher of the same capacity, the student of a
smaller capacity has a larger eg thus lower per-
formance. When we compare two students of the
same capacities distilled from teachers of different
capacities, the student distilled from the teacher of
a larger capacity has a smaller e yet a larger eg
thus a tradeoff.



Democratization In Size
Capacity Gap: Observation

 The impact of capacity gap can be observed from three aspects, i.e., respectively the teacher

perspective, the student perspective, and the compute perspective
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Democratization In Size
Cliff of Capacity Gap

 From the teacher perspective, the student may suddenly suffer a significant performance decline while
decreasing size, which we term as cliff of capacity gap.
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Democratization in Size
Cliff of Capacity Gap: Optimality of Assistant

* A pioneering study to alleviate the cliff is teacher assistant-based distillation, which inserts an
intermediate-size model between the teacher and student as a teacher assistant.

 We find that the student performance is very sensitive to the selected teacher assistant size and
exhaustively uncover the optimal teacher assistant size could be very time-consuming with a brute-
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Democratization in Size
Cliff of Capacity Gap: Optimality of Assistant

* Scale-performance tradeoff is a good indicator of teacher assistant optimality, which is quantitatively

defined by a lambda-tradeoff without an individual run to the student.
e t=m+/lambda” (1 - s), where m is the performance and (7 - s) is the sparsity w.r.t. the teacher scale.

* Sparsity is a trivial measure while the performance is a measure that requires training, which is efficiently
estimated by a sandwich framework:

* parameter sharing among these candidate assistants admits one-run and more efficient training of all
these assistants.
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Democratization in Size
Cliff of Capacity Gap: Optimality of Assistant

e Main results

Table 4: The results of task-agnostic distillation upon BERTpase. The results of TinyBERT are reproduced based
on their released checkpoints without additional task-specific distillation for a fair comparison. The GPU hours of
teacher assistant-based methods are estimated with respect to their conventional counterparts.

Method FLOPs SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE Average ] GPUs
BERTpase 109G 93.8 91.5 87.1 88.4 84.9/84.9 919 715 86.7 ’ — Table 3: The results of task-specific distillation upon
Conventional Distillation LLaMAZ2,g. The Alpaca dataset (Taori et al., 2023) 1s
utilized as the distillation data.
FT10e, (2017) 1.1G 84.6 383.1 33.8 84.5 75.3/75.4 83.2 56.7 78.3 |
LTSD10% 1.1G  90.7 89.0 87.0 85.9 78.4/78.2 86.0 664 82.7 1 X
MiniLMyt .agan (2021) 09G 900 886 872 861  80.0/80.3 879 672 834 1% Method MMLU
LTAD10% 1.1G 920 90.1 87.9 86.6 80.0/80.3 88.0 67.2 84.0 1 X LLaMA2-g 46.0
FTs0, (2017) 0.5G 84.1 32.4 381.8 83.7 74.4/74.9 82.5 57.0 77.6 1 X KD 159, 25.6
TinyBERT, 3104 (2020)  0.6G 885 879 866 856  789/792 873 672 827 1x TAqsy 6 1
MiniLMg ;341 (2021) 0.7G 89.1 891 866 854  778/784 872 661 825 1% MAXIDISCizs,  26.8
LTADS% 0.5G 909 894 877 858  79.2/798 873 657 832 1% MINIDISCie  26.9
Teacher Assistant-based Distillation
TA 109, (2020) 09G 90.0 88.5 87.3 86.3 80.1/80.7 88.0 664 83.4 2 X
MAXIDISC1g 1.1G 915 90.3 87.8 86.6 80.0/80.1 88.6 67.2 84.0 40 %
MINIDISC1qe, 1.1G 914 90.0 87.5 86.6 79.8/80.0 88.0 67.2 33.8 4x
TAsge, (2020) 0.7G  89.8 85.9 86.0 85.5 77.6/78.5 86.8 66.1 82.0 2 X
MAXIDISCsge, 0.5G 90.1 89.7 87.4 85.6 79.3/79.7 87.1 679 83.4 40 %
MINIDISCse, 0.5G 89.3 89.7 87.4 85.9 79.2/79.4 86.9 69.7 83.4 4x




Democratization in Size
Cliff of Capacity Gap: Optimality of Assistant

e Ablation results

0.800 GLUE
0.798 -
Table 5: The ablation study upon distilling BERT},5¢e t0 0.796.
BERT 1¢¢,. |
8 0.794-
©
=
Method GPU hours MRPC QQP é 0.792
‘CTSD1O% 1 x 87.8 84.6 &)
MAXIDISC1g, 40x 882  84.8 07901
w/ A-tradeoff 21x 882  84.8 0.788.
w/ sandwich framework 23x 884 849 '
MINIDISCqqe 4 % 88.4 84.9 0.786 -
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Democratization In Size
Curse of Capacity Gap

 From the student perspective, the student may first enjoy a improved performance then suffer a
performance decline while teacher is increasing size, which we term as




Democratization in Size

Curse of Capacity Gap: Generalization

* Jeacher assistant-based distillation is also a good choice to circumvent the curse.
 We discover that even teacher assistant-based distillation can only lift the curse in a limited scope.
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Democratization in Size

Curse of Capacity Gap: Generalization

* An intuitive guideline is enlarging student capacity without increasing inference compute. Mixture of
experts (MoE) student, enlarging student capacity with sparse experts.

 We incorporate the merits of MoE in the desian of the distillation.

. -.— BERT]arge — M|n|LM

)

Table 1: The curse of the capacity gap in terms of w A
GLUE (Wang et al., 2019). The A denotes the perfor- D g LA
mance difference of preceding two numbers. To ensure A >
students at similar scales, the student/teacher scale ra- p ’ FiN
tios are properly reduced for some methods. e rf 2 P )
~ & g B]j] MHA
Method BERTpase BERTjpge A 76 -, . . . : . . j} A
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 ( Fﬂ:p« ]

Teacher 86.7 88.3 +1.6 GFLOPs '\ -

KD10%/5% (2015) 81.3 80.8 —0.5 BERTpase — MiniLM w/ TA (f a

DynaBERT 50,50, (2020) 81.1 79.2 —-1.9 o - ~@— BERT|3rge = MiniLM w/ TA / FEN

MiniDisc e 50, (2022a) 82.4 82.1 —-0.3 ( MHA ] 3

TinyBERT4|_;312H (2020) 82.7 82.5 —0.2 L *

MiniLM3|_;334H (2021b) 82.5 82.0 —0.5 82 - I

MiniMoE3| -3g84H (ours) 82.6 83.1 +0.5 \

GLUE

80 -

78 -

76 - | 1 ] ] 1 ] ] 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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Democratization in Size

Curse of Capacity Gap: Generalization

e Main results

Table 3: The results of comparison between distilling BERTpase and BERT arge.

SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE | GLUE | CoNLL
Method Teacher Acc F1 SpCorr Fl1 Acc Acc  Acc | Score F1
Minil M BERTpase | 91.1  90.1 88.1 867  81.5/81.8 89.2 679 | 845 | 932
OL384H  BERTjageft | 90.9 906 890 869  81.8/824 888 700 | 851 | 932
T, BERTpase | 913 903 882 868  81.4/81.6 89.7 66.8 | 845 | 932
BERT|ygeft | 914 898 885 870  81.9/81.6 89.5 715 | 852 | 932

T~ BERTpase | 913 902 886 865  81.6/815 89.5 686 | 847 | 933
6L384H  BERT|ageft!| 90.5 900 888 868  81.8/822 908 704 | 852 | 93.3

. BERTp,se | 900 886 872 861  80.0/80.3 879 672 | 834 | 915
V4L 384H BERT|ygell | 893 875 88.1 859 79.9/80.2 87.6 672 | 83.2 91.2
oA BERTpase | 900 885 873 863  80.1/80.7 880 664 | 834 | 918
BERTyqeft | 90.6 887 881 863  80.5/80.7 879 69.0 | 84.0 | 922

T BERTpase | 90.8  88.1 882 859  79.8/804 886 693 | 839 | 923
453841 BERT|ygefh | 90.5  88.0 887  86.7 80.9/80.9 89.2 69.0 | 842 92.4

Vi M BERTpase | 89.1  89.1 86.6 854  77.8/784 872 66.1 | 825 | 90.1
WLYISL38AH  BERTiagell | 89.1  86.1 87.1  85.1  78.6/78.5 86.0 657 | 8.0 | 873
JTA BERTp.se | 898 878 860 855  77.6/78.5 86.8 66.1 | 823 | 904

v BERT|aell | 897 849 872 852  78.5/79.1 86.6 664 | 822 | 902
MINIMOE BERTp.se | 893 874 878 856  78.2/78.7 872 670 | 826 | 907
3L38H  BERT|ggeft | 89.1 884 876 862  78.8/79.5 87.5 679 | 831 | 916

L 1 is used to indicate the deficiency is tackled on both GLUE and CoNLL, otherwise |} is used.
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Figure 1: GLUE v.s. GFLOPs.
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Democratization in Size

Curse of Capacity Gap: Generalization

Table 5: Practical inference compute with reference to
BERTbase.

Method GFLOPs Throughput Params
BERTp e 10.9 80.8 tokens/ms 109.5 M
KDsgo, 0.54 544.7 tokens/ms  28.7 M

MiniLMg 384 0.68
MINIMOE3|_;384H 0.68

485.3 tokens/ms 172 M
433.1 tokens/ms 283 M

85.0 -

84.5 -

84.0 -

83.5 -

83.0 -

GLUE

82.5 -

82.0 -
81.5 -
81.0 -

gating hashing
Routing

1
finetuning w/o load balance

Figure 5: The performance of different routing choices
with MiniMoEy, -384H upon distilling BERTpse.
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Figure 6: The impact of expert number on the perfor-
mance upon distilling BERTpa5e, Where X,yE denotes
X experts in each MHA and y experts in each FFN. For
example, 1,1E is the original dense model, and 1,4E is
the MoE model used in Table 4.



Democratization In Size
Impossible Triangle of Capacity Gap

 Besides the teacher and student perspectives, we can also take a third-party perspective from the
compute side.

* The optimal teacher size, the expected student size, and the small compute overhead besides the
teacher and student consumptions form an impossible triangle of capacity gap.




Democratization In Size
Impossible Triangle of Capacity Gap: Sustainability

* Determining the optimal teacher would also be consuming, then how?
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Democratization In Size
Impossible Triangle of Capacity Gap: Sustainability

* |nspired by the spirits of scaling law, we attempt to show a law of how the optimal teacher will be sized
provided an expected student size.
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Democratization In Size
Impossible Triangle of Capacity Gap: Sustainability
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Democratization in Size

Impossible Triangle of Capacity Gap: Sustainability

Main results
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Figure 3: The new compute-performance pareto
frontier is yielded by MINIMA, namely MIN-
IMA is more compute-efficient given any com-

pute budget. The radius of each circle stands

for the model scale. performance: average value
across different tasks in percent. compute: es-
timated training compute in x10° TFLOPs as
detailed in Appendix A.

Table 3: The results of MINIMA on standard benchmarks. 5-shot direct prompting on
MMLU and CEval. 3-shot direct prompting on DROP and BBH. 8-shot chain-of-thought
prompting on GSM8K. 0-shot prompting on HumanEval. The result of CEval and DROP
are reported on validation sets and those of the others on test sets. The results of 7B LMs are

used as sanity

checks of these benchmarks. The best and second best results among 3B LMs
are underlined and boldfaced respectively.

M Tokens MMLU CEval DROP BBH GSMSK HumanEval
Acc Acc EM Score EM Score Majl@1l Pass@1
LLaMA-7B (2023a) 1,000B  35.10 28.00 27.46 30.93 9.17 10.37
LLaMA2-7B (2023b) 2000B  46.00 34.40 31.57 32.02 14.10 12.80
Baichuan-7B (2023) 1,200B  42.60 43.50 19.82 31.94 8.57 7.93
Baichuan2-7B (2023) 2600 B 5431 55.27 25.97 35.21 13.19 16.46
Mistral-7B (2023) - 62.67 45.91 46.59 43.88 41.02 28.05
Mamba-2.8B (2023) 300B  25.58 24.74 15.72 29.37 3.49 7.32
ShearedLLaMA-2.7B (2023) 50B 2697 22.88 19.98 30.48 3.56 4.88
CerebrasGPT-2.7B (2023a) 53B  24.66 23.18 11.46 29.32 243 3.66
OPT-2.7B (2022b) 180 B  26.02 24.52 13.70 28.71 1.90 0.00
BLOOM-3B (2022) 341 B  26.60 23.77 14.32 29.84 2.04 0.61
Pythia-2.8B (2023) 300B  26.28 23.11 16.04 29.30 2.73 5.49
OpenLLaMA-3B (2023) 1,000B  26.70 26.30 20.14 30.56 3.11 0.00
OpenLLaMAv2-3B (2023) 1,000B  26.36 25.41 18.19 30.45 4.62 7.93
BTLM-3B (2023b) 627 B  27.20 26.00 17.84 30.87 4.55 10.98
StableLM-3B (2023) 4000B 4475 31.05 22.35 32.59 10.99 15.85
MINIMA 126 B 28.51 28.23 22.50 31.61 8.11 10.98




Democratization in Size

Impossible Triangle of Capacity Gap: Sustainability

e Main results

Table 5: The results of MINICHAT on GPT4 as-

sessments. Macro average scores are reported
across fields in these two datasets. The better

results are boldfaced.

Vicuna-Bench BELLE-Bench

LA Saix Macro Avg Macro Avg
MINICHAT

v.s. OpenBuddy-3B (2023) 7.64: 5.42 7.77: 6.81
v.s. BiLLa-7B (2023) 7.24: 7.41 7.73: 7.49
v.s. ChatGLM-6B (2023b) 7.63: 5.63 7.44: 7.23
v.s. Phoenix-7B (2023) 7.35: 6.95 7.62: 7.21
v.s. ChatGLM2-6B (2023a) 7.35:7.30 7.40: 8.00
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Figure 6: The win-lose-tie portions of
MINICHAT versus its competitors. The left
is reported on the Vicuna-Bench while the
right is reported on the BELLE-Bench.
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Math
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Figure 4: The reasonable ability radar
is realized by MINICHAT. The head-
to-head comparison scores on Vicuna-
Bench of each baseline are rebased ac-
cording to MINICHAT.



Democratization in Size

Impossible Triangle of Capacity Gap: Sustainability

e Ablation results

Table 4: The results of ablation studies.

IM MMLU CEval DROP BBH GSM8K HumanEval
Acc Acc EM Score EM Score Majl@l Pass@1
MINIMA 28.51 28.23 22.50 31.61 8.11 10.98
- global pruning priority = 28.92  28.52 19.55 32.89 7.26 11.37
- from LLaMA2-13B 26.82  28.23 18.92 30.01 5.31 10.37
- from LLaMA2-70B 26.91 24.89 19.03 28.55 3.56 7.32
- without distillation 2539  27.79 20.41 30.21 5.08 8.54
- with teacher assistant 27.69  27.49 21.31 30.02 7.72 9.58
Table 13: The results of MINICHAT on standard benchmarks.
IM MMLU CEval DROP BBH GSMSK HumanEval
Acc Acc EM Score EM Score Majl@l Pass@1
OpenLLaMA-3B (2023)  26.70 26.30 20.14 30.56 3.11 0.00
OpenBuddy-3B (2023) 23.88 24.67 15.89 29.08 11.07 3.66
A -2.82 -1.63 -4.25 -1.48
MINIMA 28.51 28.23 22.50 31.61 8.11 10.98
MINICHAT 38.40 36.48 22.58 31.36 29.72 18.29
A -0.25




Democratization in Size

Impossible Triangle of Capacity Gap: Sustainability

e (Cases

# Example usage

elementl = Element(’a’)

element2 = Element(’b’)

table = HashTable()

table.put(’a’, elementl)

table.put(’b’, element2)

print (table.get(’a’)) # prints the Element object for ’a’

print (table.contains(’a’)) # prints True

print (table.get(’z’)) # raises a KeyError
Note that this approach has a time complexity of O(n * m), where n and m are the lengths of the arrays, which may be slow for large
arrays. There are other data structures that could be used to implement this, such as a linked list or a tree-based data structure, but a

hash table is a simple and efficient solution for this problem.

Question: Implement a program to find the common elements in two arrays without using any extra data structures.

OpenBuddy-3B: To find the common elements in two arrays without using any extra data structures, you can use the following alg-
orithm:

1. Sort the two arrays in ascending order (using an appropriate sorting function).

2. Compare the first element of each array. If it’s the same, then the rest of the array is common.

3. If the first element is different, then the rest of the array is common.

4. Repeat steps 2 and 3 until either all the elements in the first array are different or all the elements in the second array are different.

Here is the Python code for the algorithm:

def find_common_elements(arrl, arr2):
sorted_arrl = sorted(arril)
sorted_arr2 = sorted(arr2)
for i in range(len(sorted_arrl)):

if sorted_arri[i] == sorted_arr2[i]:
return sorted_arril
return []

This algorithm can be used to find the common elements in any two arrays.

MINICHAT: Here is a Python implementation:

def common_elements(arrl, arr2):
if len(arrl) ==
return []
if len(arr2) ==
return arrl
common_elements = []
for element in arrl:
if element in arr2:
common_elements.append(element)
return common_elements

ChatGLM2-6B: One way to implement a program to find the common elements in two arrays without using any extra data structu-
res is to use a hash table. A hash table is a data structure that stores key-value pairs and allows for fast lookup, insertion, and delet-
ion of elements.

To use a hash table to find the common elements in two arrays, you would first need to create a hash table with a key as the index and
a value as the key-value pair. Then, for each element in the first array, you would use the hash table to look up the element and com-
pare it to the elements in the second array. If a match is found, the element and its index would be added to the hash table.

Here is a simple example of how this could be implemented in Python:

class Element:
def init__(self, value):

self.value = value

class HashTable:
def init__(self):

self.table = {}

def put(self, key, value):
self.table[key] = value

def get(self, key):
return self.table.get(key)

def contains(self, key):
return self.table.contains(key)
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Impossible Triangle of Capacity Gap: Sustainability

e Extensions
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Pressure Testing

Fact Retrieval Across Context Lengths ("Needle In A HayStack")

Token Limit

Standard Benchmarks
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Democratization in Size

Law of Capacity Gap: External Evidence

* There are evident cases where similar law is implicitly applied yet not explicitly shown.

 Apple: Apple Foundation Model (https://arxiv.org/pdf/2407.21075)

 Google: Gemma-2 (https://arxiv.org/pdf/2408.00118)

* Nvidia: Minitron (https://arxiv.org/pdf/2407.14679v1)

Model Tokens | Hellaswag | MMLU
4B-Random-Init 150B* 46.22 24.36
4B-Random-Init 400B 48.23 26.24
4B-Pruned (prune Nemotron-4 15B) 150B* 50.85 24.57
4B-Pruned-Distill (prune Nemotron-4 15B) | 100B* 51.04 37.81
4B-Pruned-Distill (prune MINITRON 8B) 100B* 52.04 42.45

Table 12: Accuracy comparison for 4B using the 8T blend. * Indicates settings with iso-compute.

3.2. Knowledge Distillation

Given a large model used as a teacher, we learn
smaller models by distilling from the probability
given by the teacher of each token x given its
context x., i.e., Pr(x | x.). More precisely, we
minimize the negative log-likelihood between the
probabilities from the teacher and the student:

n})in —Pr(x | xc) log Ps(x | x.),

where Pgs is the parameterized probability of the
student. Note that knowledge distillation was
also used in Gemini 1.5 (Gemini Team, 2024).

AFM-on-device: For the on-device model, we found that knowledge distilla-
tion [Hinton et al., 2015] and structural pruning are effective ways to improve
model performance and training efficiency. These two methods are comple-
mentary to each other and work in different ways. More specifically, before
training AFM-on-device, we initialize it from a pruned 6.4B model (trained
from scratch using the same recipe as AFM-server), using pruning masks that
are learned through a method similar to what is described in [Wang et al.,
2020; Xia et al., 2023]. The key differences are: (1) we only prune the hidden
dimension in the feed-forward layers; (2) we use Soft-Top-K masking [Lei et al.,
2023| instead of HardConcrete masking [Louizos et al., 2018]; (3) we employ the
same pre-training data mixture as the core phase to learn the mask, training
for 188B tokens. Then, during the core pre-training of AFM-on-device, a dis-
tillation loss is used by replacing the target labels with a convex combination
of the true labels and the teacher model’s top-1 predictions, (with 0.9 weight
assigned to the teacher’s labels), training for a full 6.3T tokens. We observe

200M 400M 1B

from scratch 23 19 17
distilled (7B) 21 17 15

Table 7 | Perplexity measured on a validation set
of models of different sizes trained with or with-
out distillation. The teacher has 7B parameters.



Future Work

Law of capacity gap with data amount considered.
Vocabulary-agnostic distillation (e.g., from LLaMA-3.1-405B).

Multi-teacher distillation (e.g., from generalist/code/math models).

RLHF with distillation (e.g., DPO with a large teacher).

etc.






